Author: Francis Ndungu
Last Updated: Mon, Oct 16, 2023Python is a highly level programming language that allows you to build general purpose applications. By integrating Python with a Vultr Managed Database for PostgreSQL, you can automate most application processes for fast scaling and high level development of new features to match your user needs.
Depending on your Python application structure, integrating a managed PostgreSQL database best suites the following types of applications:
E-commerce web applications.
A data warehouse for mobile apps and desktop applications.
Geospatial, analytics, and vector applications.
This guide explains how to use Vultr Managed Database for PostgreSQL in Python applications. By leveraging the database's high availability, you're to create a console application that makes database queries to retrieve stored information.
Before you begin, be sure to:
Deploy a Vultr Cloud Server Distribution of your choice
This guide uses a Linux server, but depending on your Python application backend, you can apply the instructions on any distribution including Windows Servers.
Create a non-root sudo user account and switch to the new account
To integrate Python with a Vultr Managed Database for PostgreSQL, install the required psycopg
adapter package that allows you to connect to the database. Depending on your Linux distribution, install the PostgreSQL adapter as described in the steps below.
Update the server:
On Ubuntu/Debian:
$ sudo apt update
On CentOS, and RHEL distributions:
$ sudo dnf update
Install the PostgreSQL client tool
$ sudo apt-get install -y postgresql-client
OR
$ sudo dnf install postgresql
Install the Python Pip Package Manager
$ sudo apt install -y python3-pip
OR
$ sudo dnf install python3-pip
Using pip
, install the PostgreSQL psycopg
adapter package
$ pip install psycopg
To connect Python to your Vultr Managed Database for PostgreSQL, create a sample database. Within the database, create a table and add sample records you can retrieve using the Python application as described below.
This sample Python application requires a sample PostgreSQL database with one table. This table stores customers' names and their unique customer_ids
. Follow the steps below to set up the database:
Using the PostgreSQL client tool psql
, log in to the Vultr Managed Database for PostgreSQL cluster
$ psql -p 16751 -h vultr-prod-aaa.com -d defaultdb -U vultradmin
Or, copy and use the connection string in your Vultr Managed Database dashboard
postgres://vultradmin:example-password@vultr-prod-aaa.com:16751/defaultdb
Replace the above psql
connection details with your actual database values as below:
Username: vultradmin
Password: example-password
Host: vultr-prod-aaa.com
Port: 16751
When prompted enter the correct Vultr Managed Database for PostgreSQL database to connect to your database.
Create a new xyz_company
database
defaultdb=> CREATE DATABASE xyz_company;
Switch to the new xyz_company
database
defaultdb=> \c xyz_company;
Create a new sample customers
table.
xyz_company=> CREATE TABLE customers (
customer_id SERIAL PRIMARY KEY,
first_name VARCHAR (50),
last_name VARCHAR (50)
);
Add sample data to the customers
table
xyz_company=> INSERT INTO customers (first_name, last_name) VALUES ('MARY', 'ROE');
INSERT INTO customers (first_name, last_name) VALUES ('PETER', 'SMITH');
INSERT INTO customers (first_name, last_name) VALUES ('JOHN', 'ALEX');
View the customers
table data to verify that all records are available
xyz_company=> SELECT
customer_id ,
first_name,
last_name
FROM customers;
Output:
customer_id | first_name | last_name
-------------+------------+-----------
1 | MARY | ROE
2 | PETER | SMITH
3 | JOHN | ALEX
(3 rows)
Exit the PostgreSQL database console
xyz_company=> \q
In Python, a central database connection module allows you to reuse code in different application files without applying the logic in each file. In this section, create a Python connection file that works as a central module for PostgreSQL connections.
Create a new project
directory
$ mkdir project
Switch to the new directory
$ cd project
Using a text editor such as Nano
, create a new Python file postgresql_connector.py
$ nano postgresql_connector.py
Add the following code to the file. Replace the psycopg.connect
values with your actual Vultr Managed Database for PostgreSQL values
import psycopg
class PostgresqlConnector:
def __init__(self):
self.db_conn = psycopg.connect(
host = "vultr-prod-aaa.com",
port = "16751",
user = "vultradmin",
password = "example-password",
dbname = "xyz_company"
)
def insert_customer(self, query_string, json_data):
db_cur = self.db_conn.cursor()
db_cur.execute(query_string, [json_data['first_name'], json_data['last_name']])
self.db_conn.commit()
return "Success"
def get_customers(self, query_string):
db_cur = self.db_conn.cursor()
db_cur.execute(query_string)
return db_cur.fetchall()
def update_customer(self, query_string, json_data):
db_cur = self.db_conn.cursor()
db_cur.execute(query_string, [json_data['first_name'], json_data['last_name'], json_data['customer_id']])
self.db_conn.commit()
return "Success"
def delete_customer(self, query_string, json_data):
db_cur = self.db_conn.cursor()
db_cur.execute(query_string, [json_data['customer_id']])
self.db_conn.commit()
return "Success"
Save and close the file.
In the above application file:
PostgresqlConnector()
is a class module with five methods:
__init__()
executes every time you create an instance of the PostgresqlConnector
class to establish a connection to the PostgreSQL database using the self.db_conn = psycopg.connect(...)
function
insert_customer(self, query_string, json_data)
takes a JSON payload and populates the customers
table using the INSERT
SQL statement
get_customers(self, query_string)
retrieve all customers from the database
update_customer(self, query_string, json_data)
updates a customer that matches a given customer_id
value
delete_customer(self, query_string, json_data)
deletes a customer from the database table
Create a new main.py
file
$ nano main.py
Add the following code to the file
import http.server
from http import HTTPStatus
import socketserver
import json
import postgresql_connector
class HttpServerHandler(http.server.SimpleHTTPRequestHandler):
def set_headers(self):
self.send_response(HTTPStatus.OK)
self.send_header('Content-type', 'application/json')
self.end_headers()
def do_POST(self):
self.set_headers()
json_data = json.loads(self.rfile.read(int(self.headers['Content-Length'])))
pg_conn = postgresql_connector.PostgresqlConnector()
query_string = "insert into customers (first_name, last_name) values (%s, %s)"
resp = {"data": pg_conn.insert_customer(query_string, json_data)}
self.wfile.write(bytes(json.dumps(resp, indent = 2) + "\r\n", "utf8"))
def do_GET(self):
self.set_headers()
pg_conn = postgresql_connector.PostgresqlConnector()
query_string = 'select * from customers'
resp = {"data": pg_conn.get_customers(query_string)}
self.wfile.write(bytes(json.dumps(resp, indent = 2) + "\r\n", "utf8"))
def do_PUT(self):
self.set_headers()
json_data = json.loads(self.rfile.read(int(self.headers['Content-Length'])))
pg_conn = postgresql_connector.PostgresqlConnector()
query_string = 'update customers set first_name = %s, last_name = %s where customer_id = %s'
resp = {"data": pg_conn.update_customer(query_string, json_data)}
self.wfile.write(bytes(json.dumps(resp, indent = 2) + "\r\n", "utf8"))
def do_DELETE(self):
self.set_headers()
json_data = json.loads(self.rfile.read(int(self.headers['Content-Length'])))
pg_conn = postgresql_connector.PostgresqlConnector()
query_string = 'delete from customers where customer_id = %s'
resp = {"data": pg_conn.delete_customer(query_string, json_data)}
self.wfile.write(bytes(json.dumps(resp, indent = 2) + "\r\n", "utf8"))
httpd = socketserver.TCPServer(('', 8080), HttpServerHandler)
print("HTTP server started at port 8080...")
try:
httpd.serve_forever()
except KeyboardInterrupt:
httpd.server_close()
print("HTTP server stopped.")
Save and close the file.
In the above main.py
file:
The import section adds the HTTP server and postgresql_connector
module you created earlier to the application functions
HttpServerHandler(http.server.SimpleHTTPRequestHandler)
is a web server handler class that listens for incoming HTTP connections on your defined port 8080
with the following methods:
set_headers(self)
sets the correct HTTP headers when the Python application responds to HTTP clients
do_POST(self)
handles all HTTP POST requests to redirect an INSERT
query to the PostgresqlConnector()
class
do_GET(self)
runs an HTTP GET method to retrieve data from the customers
table using the PostgresqlConnector()
class. This method runs the select * from customers
SQL statement
do_PUT(self)
executes an HTTP PUT method to update customer details in the database table using the update customers set first_name = %s, last_name = %s where customer_id = %s
SQL statement
do_DELETE(self)
runs a function that deletes a customer from the database using the delete from customers where customer_id = %s
SQL statement
You have developed a Python application with the necessary modules and functions. To verify that your application reads and writes to your Vultr Managed Database for PostgreSQl, run the following operations.
Run the application in the background
$ python3 main.py &
Output:
HTTP server started at port 8080...
Using the curl
utility tool, create a new customer using the following HTTP POST method
$ curl -X POST http://localhost:8080/ -H 'Content-Type: application/json' -d '{"first_name": "ANNE", "last_name": "HENRY"}'
Output:
{
"data": "Success"
}
Using the HTTP GET method, retrieve all customers in the database
$ curl -X GET http://localhost:8080/
Output:
{
"data": [
[
1,
"MARY",
"ROE"
],
[
2,
"PETER",
"SMITH"
],
[
3,
"JOHN",
"ALEX"
],
[
4,
"ANNE",
"HENRY"
]
]
}
Using the PUT method, update a customer's details
$ curl -X PUT http://localhost:8080/ -H 'Content-Type: application/json' -d '{"first_name": "MARY ANNE", "last_name": "SMITH", "customer_id": 1}'
Output.
{
"data": "Success"
}
Delete a customer from the database
$ curl -X DELETE http://localhost:8080/ -H 'Content-Type: application/json' -d '{"customer_id": 4}'
Output:
{
"data": "Success"
}
To stop the Python application background process, view the running jobs
$ jobs
Output:
[1]+ Running python3 main.py &
Keep note of the background process ID
Stop the process by ID. For example, for job ID 1
, run:
$ kill %1
You have created a Python application that connects to a Vultr Managed Database for PostgreSQL to perform read and write tasks. Depending on your Python application structure, create the necessary databases, and implement the correct connector with your desired SQL statements to interact with your PostgreSQL database.
To implement more functionalities using your Vultr Managed Database for MySQL, visit the following resources: